Abstract
We report the synthesis of colloidal CsPbX3-Pb4S3Br2 (X = Cl, Br, I) nanocrystal heterostructures, providing an example of a sharp and atomically resolved epitaxial interface between a metal halide perovskite and a non-perovskite lattice. The CsPbBr3-Pb4S3Br2 nanocrystals are prepared by a two-step direct synthesis using preformed subnanometer CsPbBr3 clusters. Density functional theory calculations indicate the creation of a quasi-type II alignment at the heterointerface as well as the formation of localized trap states, promoting ultrafast separation of photogenerated excitons and carrier trapping, as confirmed by spectroscopic experiments. Postsynthesis reaction with either Cl- or I- ions delivers the corresponding CsPbCl3-Pb4S3Br2 and CsPbI3-Pb4S3Br2 heterostructures, thus enabling anion exchange only in the perovskite domain. An increased structural rigidity is conferred to the perovskite lattice when it is interfaced with the chalcohalide lattice. This is attested by the improved stability of the metastable γphase (or "black"phase) of CsPbI3 in the CsPbI3-Pb4S3Br2 heterostructure.
Original language | English |
---|---|
Pages (from-to) | 1435-1446 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 143 |
Issue number | 3 |
Early online date | 13 Jan 2021 |
DOIs | |
Publication status | Published - 27 Jan 2021 |
Bibliographical note
Funding Information:This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza-2017 Materials For Energy”.
Publisher Copyright:
© 2021 American Chemical Society. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
Funding
This work was performed on the Dutch national e-infrastructure with the support of SURF Cooperative. L.P. and J.S. are thankful for the support by the National Key R&D Program of China (2018YFC0910600) and the National Natural Science Foundation of China (61775145). F.D.S. and S.B. acknowledge support by the European Research Council via the ERC-StG “NANOLED” (851794) and the ERC-Cog “REALNANO” (815128). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme through Grant Agreement No. 731019 (EUSMI). S.B., A.P., and V.P. gratefully acknowledge the financial support from the Italian Ministry of University and Research (MIUR) through grant “Dipartimenti di Eccellenza-2017 Materials For Energy”.
Funders | Funder number |
---|---|
ERC-Cog | |
ERC-StG | |
Italian Ministry of University and Research | |
National Key R&D Program of China | 2018YFC0910600 |
Horizon 2020 Framework Programme | 815128, 731019, 851794 |
European Commission | |
European Research Council | |
National Natural Science Foundation of China | 61775145 |
Ministero dell’Istruzione, dell’Università e della Ricerca |