Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates

Lara Maldanis, Murilo Carvalho, Mariana Ramos Almeida, Francisco Idalécio Freitas, José Artur Ferreira Gomes De Andrade, Rafael Silva Nunes, Carlos Eduardo Rochitte, Ronei Jesus Poppi, Raul Oliveira Freitas, Fábio Rodrigues, Sandra Siljeström, Frederico Alves Lima, Douglas Galante, Ismar S. Carvalho, Carlos Alberto Perez, Marcelo Rodrigues de Carvalho, Jefferson Bettini, Vincent Fernandez, José Xavier-Neto

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a Multi-Valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the Non- Valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-Ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a Long-Lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils.
Original languageEnglish
Article numbere14698
JournaleLife
Volume5
Issue numberAPRIL2016
DOIs
Publication statusPublished - 19 Apr 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates'. Together they form a unique fingerprint.

Cite this