Abstract
We report measurements of the frequency-dependent shear moduli of aging colloidal systems that evolve from a purely low-viscosity liquid to a predominantly elastic glass or gel. Using microrheology, we measure the local complex shear modulus G* (ω) over a very wide range of frequencies (from 1 Hz to 100 kHz). The combined use of one- and two-particle microrheology allows us to differentiate between colloidal glasses and gels-the glass is homogenous, whereas the colloidal gel shows a considerable degree of heterogeneity on length scales larger than 0.5 μm. Despite this characteristic difference, both systems exhibit similar rheological behaviors which evolve in time with aging, showing a crossover from a single-power-law frequency dependence of the viscoelastic modulus to a sum of two power laws. The crossover occurs at a time t0, which defines a mechanical transition point. We found that the data acquired during the aging of different samples can be collapsed onto a single master curve by scaling the aging time with t0. This raises questions about the prior interpretation of two power laws in terms of a superposition of an elastic network embedded in a viscoelastic background. © 2008 The American Physical Society.
Original language | English |
---|---|
Article number | 061402 |
Journal | Physical Review E |
Volume | 78 |
Issue number | 6 |
DOIs | |
Publication status | Published - 11 Dec 2008 |