TY - JOUR
T1 - High-Throughput Reaction Optimisation and Activity Screening of Ferrocene-Based Lewis Acid-Catalyst Complexes by Using Continuous-Flow Reaction Detection Mass Spectrometry
AU - Martha, C.T.
AU - Heemskerk, A.
AU - Hoogendoorn, J.C.
AU - Elders, N.
AU - Niessen, W.M.A.
AU - Orru, R.V.A.
AU - Irth, H.
PY - 2009
Y1 - 2009
N2 - Optimising synthetic conversions and assessing catalyst performance is a tedious and laborious endeavour. Herein, we present an automated alternative to the commonly applied sequential approaches that are used to increase catalyst discovery process efficiencies by increasing the number of entities that can be tested. This new approach combines conversion of the reactants and determination of product formation into a single comprehensive reaction detection system that can be operated with minimal catalyst and reactant consumption. With this approach, rudimentary reaction conditions can be quickly optimised and the same system can then be used to screen for the optimal homogenous catalyst in a selected solution-phase synthetic conversion. The system, which is composed of standard HPLC components, can be used to screen catalyst libraries at a repetition rate of five minutes and can be run unsupervised. The sensitive mass spectrometric detection that is implemented in the reaction detection methodology can be used for the simultaneous monitoring of reactants, catalysts and product ions. In the experiments, the three-component reaction that gives a substituted 2imidazoline was optimised. Afterwards, the same method was used to assess a library of ferrocene-based Lewis acid catalysts for performance in the aforementioned conversion in six different solvents. We demonstrate the feasibility of using this methodology to directly compare the performance results obtained in different solvents by calibrating the solvent-specific MS responses. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA,.
AB - Optimising synthetic conversions and assessing catalyst performance is a tedious and laborious endeavour. Herein, we present an automated alternative to the commonly applied sequential approaches that are used to increase catalyst discovery process efficiencies by increasing the number of entities that can be tested. This new approach combines conversion of the reactants and determination of product formation into a single comprehensive reaction detection system that can be operated with minimal catalyst and reactant consumption. With this approach, rudimentary reaction conditions can be quickly optimised and the same system can then be used to screen for the optimal homogenous catalyst in a selected solution-phase synthetic conversion. The system, which is composed of standard HPLC components, can be used to screen catalyst libraries at a repetition rate of five minutes and can be run unsupervised. The sensitive mass spectrometric detection that is implemented in the reaction detection methodology can be used for the simultaneous monitoring of reactants, catalysts and product ions. In the experiments, the three-component reaction that gives a substituted 2imidazoline was optimised. Afterwards, the same method was used to assess a library of ferrocene-based Lewis acid catalysts for performance in the aforementioned conversion in six different solvents. We demonstrate the feasibility of using this methodology to directly compare the performance results obtained in different solvents by calibrating the solvent-specific MS responses. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA,.
U2 - 10.1002/chem.200900317
DO - 10.1002/chem.200900317
M3 - Article
SN - 0947-6539
VL - 15
SP - 7368
EP - 7375
JO - Chemistry: A European Journal
JF - Chemistry: A European Journal
IS - 30
ER -