Research output per year
Research output per year
Yongjin Lee*, Senja D. Barthel, Paweł Dłotko, Seyed Mohamad Moosavi, Kathryn Hess, Berend Smit
Research output: Contribution to Journal › Article › Academic › peer-review
The materials genome initiative has led to the creation of a large (over a million) database of different classes of nanoporous materials. As the number of hypothetical materials that can, in principle, be experimentally synthesized is infinite, a bottleneck in the use of these databases for the discovery of novel materials is the lack of efficient computational tools to analyze them. Current approaches use brute-force molecular simulations to generate thermodynamic data needed to predict the performance of these materials in different applications, but this approach is limited to the analysis of tens of thousands of structures due to computational intractability. As such, it is conceivable and even likely that the best nanoporous materials for any given application have yet to be discovered both experimentally and theoretically. In this article, we seek a computational approach to tackle this issue by transitioning away from brute-force characterization to high-throughput screening methods based on big-data analysis, using the zeolite database as an example. For identifying and comparing zeolites, we used a topological data analysis-based descriptor (TD) recognizing pore shapes. For methane storage and carbon capture applications, our analyses seeking pairs of highly similar zeolites discovered good correlations between performance properties of a seed zeolite and the corresponding pair, which demonstrates the capability of TD to predict performance properties. It was also shown that when some top zeolites are known, TD can be used to detect other high-performing materials as their neighbors with high probability. Finally, we performed high-throughput screening of zeolites based on TD. For methane storage (or carbon capture) applications, the promising sets from our screenings contained high-percentages of top-performing zeolites: 45% (or 23%) of the top 1% zeolites in the entire set. This result shows that our screening approach using TD is highly efficient in finding high-performing materials. We expect that this approach could easily be extended to other applications by simply adjusting one parameter, the size of the target gas molecule.
Original language | English |
---|---|
Pages (from-to) | 4427-4437 |
Number of pages | 11 |
Journal | Journal of Chemical Theory and Computation |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - 14 Aug 2018 |
Externally published | Yes |
During the early stage of the research Y.L. and B.S. were supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the DOE, Office of Science, Office of Basic Energy Sciences under award DE-SC0001015. Y.L. (during the later stages of the research) and S.B. were supported by the National Center of Competence in Research (NCCR) “Materials” Revolution: Computational Design and Discovery of Novel Materials (MARVEL) of the Swiss National Science Foundation (SNSF). Y.L. thanks the ShanghaiTech University Research Startup Fund for support. M.M. was supported by the Deutsche Forschungsgemeinschaft (DFG, priority program SPP 1570). B.S. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (MaGic, grant agreement no. 666983) and by the ‘Korean-Swiss Science and Technology Programme’ (KSSTP) grant no. 162130 of the Swiss National Science Foundation (SNSF). P.D. was supported by the Advanced Grant of the European Research Council GUDHI, (Geometric Understanding in Higher Dimensions) (grant agreement no. 339025). P.D. is also supported by the EPSRC grant New Approaches to DataScience: Application Driven Topological Data Analysis EP/R018472/1.
Funders | Funder number |
---|---|
European Research Council GUDHI | |
European Union's Horizon 2020 research and innovation program | |
European Union’s Horizon 2020 research and innovation program | 162130 |
Korean-Swiss Science and Technology Programme | |
Office of Basic Energy Sciences | DE-SC0001015 |
U.S. Department of Energy | |
Office of Science | |
Horizon 2020 Framework Programme | 666983, 339025 |
Engineering and Physical Sciences Research Council | EP/R018472/1 |
European Research Council | |
Deutsche Forschungsgemeinschaft | |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | |
National Center of Competence in Research Quantum Science and Technology | |
ShanghaiTech University |
Research output: Contribution to Journal › Article › Academic › peer-review