Abstract
The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust.
Original language | English |
---|---|
Pages (from-to) | 482-486 |
Number of pages | 5 |
Journal | Nature Geoscience |
Volume | 12 |
Issue number | 6 |
Early online date | 20 May 2019 |
DOIs | |
Publication status | Published - Jun 2019 |
Funding
This work was supported by the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement No. 663830) and National Science Foundation (EAR-1834367) to S.L. and by the award NERC NE/R001332/1 to M.-A.M. We thank D. Muir, I. McDonald, T. Oldroyd and M. Jansen for their assistance on the scanning electron microscope, with LA-ICP-MS, with sample preparation and in using the micromill, respectively.
Funders | Funder number |
---|---|
National Science Foundation | EAR-1834367, 1834367 |
Horizon 2020 Framework Programme | |
H2020 Marie Skłodowska-Curie Actions | 663830 |
Natural Environment Research Council | NE/R001332/1 |