TY - JOUR
T1 - Impact of grazing on hibernating caterpillars of the calcareous grassland butterfly Melitaea cinxia.
AU - van Noordwijk, C.G.E.
AU - Flierman, D.E.
AU - Remke, E.
AU - Wallis de Vries, M.F.
AU - Berg, M.P.
PY - 2012
Y1 - 2012
N2 - Semi-natural grasslands are increasingly grazed by large herbivores for nature conservation purposes. For many insects such grazing is essential for the conservation of their habitat, but at the same time, populations decrease at high grazing intensity. We hypothesised that grazing management may cause increased butterfly mortality, especially for life-stages with low mobility, such as hibernating caterpillars. To test this, we measured the effect of sheep grazing on overwinter larval survival. We used the Glanville fritillary (Melitaea cinxia), which has gregarious caterpillars hibernating in silk nests, as a model species. Caterpillar nests were monitored throughout the hibernating period in calcareous grassland reserves with low and high intensity sheep grazing and in an ungrazed control treatment. After grazing, 64 % of the nests at the high intensity grazing treatment were damaged or missing, compared to 8 and 12 % at the ungrazed and low intensity grazing treatment, respectively. Nest volume and caterpillar survival were 50 % lower at the high intensity grazing treatment compared to both ungrazed and low intensity grazing treatments. Nest damage and increased mortality were mainly caused by incidental ingestion of the caterpillars by the sheep. It is likely that grazing similarly affects other invertebrates, depending on their location within the vegetation and their ability to actively avoid herbivores. This implies that the impact of grazing strongly depends on the timing of this management in relation to the phenology of the species. A greater focus on immature and inactive life-stages in conservation policy in general and particularly in action plans for endangered species is required to effectively preserve invertebrate diversity. © 2012 The Author(s).
AB - Semi-natural grasslands are increasingly grazed by large herbivores for nature conservation purposes. For many insects such grazing is essential for the conservation of their habitat, but at the same time, populations decrease at high grazing intensity. We hypothesised that grazing management may cause increased butterfly mortality, especially for life-stages with low mobility, such as hibernating caterpillars. To test this, we measured the effect of sheep grazing on overwinter larval survival. We used the Glanville fritillary (Melitaea cinxia), which has gregarious caterpillars hibernating in silk nests, as a model species. Caterpillar nests were monitored throughout the hibernating period in calcareous grassland reserves with low and high intensity sheep grazing and in an ungrazed control treatment. After grazing, 64 % of the nests at the high intensity grazing treatment were damaged or missing, compared to 8 and 12 % at the ungrazed and low intensity grazing treatment, respectively. Nest volume and caterpillar survival were 50 % lower at the high intensity grazing treatment compared to both ungrazed and low intensity grazing treatments. Nest damage and increased mortality were mainly caused by incidental ingestion of the caterpillars by the sheep. It is likely that grazing similarly affects other invertebrates, depending on their location within the vegetation and their ability to actively avoid herbivores. This implies that the impact of grazing strongly depends on the timing of this management in relation to the phenology of the species. A greater focus on immature and inactive life-stages in conservation policy in general and particularly in action plans for endangered species is required to effectively preserve invertebrate diversity. © 2012 The Author(s).
U2 - 10.1007/s10841-012-9478-z
DO - 10.1007/s10841-012-9478-z
M3 - Article
SN - 1366-638X
VL - 16
SP - 909
EP - 920
JO - Journal of Insect Conservation
JF - Journal of Insect Conservation
ER -