TY - JOUR
T1 - In-group defense, out-group aggression, and coordination failures in intergroup conflict.
AU - De Dreu, Carsten K W
AU - Gross, Jörg
AU - Méder, Zsombor
AU - Giffin, Michael
AU - Prochazkova, Eliska
AU - Krikeb, Jonathan
AU - Columbus, Simon
PY - 2016/9/20
Y1 - 2016/9/20
N2 - Intergroup conflict persists when and because individuals make costly contributions to their group's fighting capacity, but how groups organize contributions into effective collective action remains poorly understood. Here we distinguish between contributions aimed at subordinating out-groups (out-group aggression) from those aimed at defending the in-group against possible out-group aggression (in-group defense). We conducted two experiments in which three-person aggressor groups confronted three-person defender groups in a multiround contest game (n = 276; 92 aggressor-defender contests). Individuals received an endowment from which they could contribute to their group's fighting capacity. Contributions were always wasted, but when the aggressor group's fighting capacity exceeded that of the defender group, the aggressor group acquired the defender group's remaining resources (otherwise, individuals on both sides were left with the remainders of their endowment). In-group defense appeared stronger and better coordinated than out-group aggression, and defender groups survived roughly 70% of the attacks. This low success rate for aggressor groups mirrored that of group-hunting predators such as wolves and chimpanzees (n = 1,382 cases), hostile takeovers in industry (n = 1,637 cases), and interstate conflicts (n = 2,586). Furthermore, whereas peer punishment increased out-group aggression more than in-group defense without affecting success rates (Exp. 1), sequential (vs. simultaneous) decision-making increased coordination of collective action for out-group aggression, doubling the aggressor's success rate (Exp. 2). The relatively high success rate of in-group defense suggests evolutionary and cultural pressures may have favored capacities for cooperation and coordination when the group goal is to defend, rather than to expand, dominate, and exploit.
AB - Intergroup conflict persists when and because individuals make costly contributions to their group's fighting capacity, but how groups organize contributions into effective collective action remains poorly understood. Here we distinguish between contributions aimed at subordinating out-groups (out-group aggression) from those aimed at defending the in-group against possible out-group aggression (in-group defense). We conducted two experiments in which three-person aggressor groups confronted three-person defender groups in a multiround contest game (n = 276; 92 aggressor-defender contests). Individuals received an endowment from which they could contribute to their group's fighting capacity. Contributions were always wasted, but when the aggressor group's fighting capacity exceeded that of the defender group, the aggressor group acquired the defender group's remaining resources (otherwise, individuals on both sides were left with the remainders of their endowment). In-group defense appeared stronger and better coordinated than out-group aggression, and defender groups survived roughly 70% of the attacks. This low success rate for aggressor groups mirrored that of group-hunting predators such as wolves and chimpanzees (n = 1,382 cases), hostile takeovers in industry (n = 1,637 cases), and interstate conflicts (n = 2,586). Furthermore, whereas peer punishment increased out-group aggression more than in-group defense without affecting success rates (Exp. 1), sequential (vs. simultaneous) decision-making increased coordination of collective action for out-group aggression, doubling the aggressor's success rate (Exp. 2). The relatively high success rate of in-group defense suggests evolutionary and cultural pressures may have favored capacities for cooperation and coordination when the group goal is to defend, rather than to expand, dominate, and exploit.
U2 - 10.1073/pnas.1605115113
DO - 10.1073/pnas.1605115113
M3 - Article
C2 - 27601640
SN - 0027-8424
VL - 113
SP - 10524
EP - 10529
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 38
ER -