Abstract
Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.
Original language | English |
---|---|
Article number | 231108 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Physical Review Letters |
Volume | 123 |
Issue number | 23 |
DOIs | |
Publication status | Published - 5 Dec 2019 |
Funding
The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universität Hannover, and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project Grant No. VA 1031/1-1 and under Germany’s Excellence Strategy EXC 2123 QuantumFrontiers for the construction, installation, and operation of the squeezed light source. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigación, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Center of Poland, the Swiss National Science Foundation (SNSF), the European Commission, and the Hungarian Scientific Research Fund (OTKA). The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen, Germany, for provision of computational resources. [1] 1 J. Aasi ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [2] 2 F. Acernese ( Virgo Collaboration ) , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [3] 3 K. L. Dooley , Classical Quantum Gravity 33 , 075009 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/7/075009 [4] 4 V. B. Braginsky , Sov. Phys. JETP 26 , 831 ( 1968 ). SPHJAR 0038-5646 [5] 5 M. T. Jaekel and S. Reynaud , Europhys. Lett. 13 , 301 ( 1990 ). EULEEJ 0295-5075 10.1209/0295-5075/13/4/003 [6] 6 C. M. Caves , Phys. Rev. D 23 , 1693 ( 1981 ). PRVDAQ 0556-2821 10.1103/PhysRevD.23.1693 [7] 7 M. Punturo , Classical Quantum Gravity 27 , 084007 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084007 [8] 8 Y. Takeno , M. Yukawa , H. Yonezawa , and A. Furusawa , Opt. Express 15 , 4321 ( 2007 ). OPEXFF 1094-4087 10.1364/OE.15.004321 [9] 9 H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Phys. Rev. Lett. 117 , 110801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.110801 [10] 10 R. E. Slusher , L. W. Hollberg , B. Yurke , J. C. Mertz , and J. F. Valley , Phys. Rev. Lett. 55 , 2409 ( 1985 ). PRLTAO 0031-9007 10.1103/PhysRevLett.55.2409 [11] 11 M. Mehmet and H. Vahlbruch , Classical Quantum Gravity 36 , 015014 ( 2019 ). CQGRDG 0264-9381 10.1088/1361-6382/aaf448 [12] 12 LIGO Scientific Collaboration , Nat. Phys. 7 , 962 ( 2011 ). NPAHAX 1745-2473 10.1038/nphys2083 [13] 13 H. Grote , K. Danzmann , K. L. Dooley , R. Schnabel , J. Slutsky , and H. Vahlbruch , Phys. Rev. Lett. 110 , 181101 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.110.181101 [14] 14 AEI Hannover, research news, https://www.geo600.org/1897380/gravitational-wave-detectors-begin-third-observation-run . [15] 15 J. Lough (to be published). [16] 16 LIGO Scientific Collaboration , Nat. Photonics 7 , 613 ( 2013 ). NPAHBY 1749-4885 10.1038/nphoton.2013.177 [17] 17 M. Tse , preceding Letter, Phys. Rev. Lett. 123 , 231107 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.123.231107 [18] 18 AdV Squeezing Working Group ,
Funders | Funder number |
---|---|
National Science Center of Poland | |
Netherlands Organization for Scientific Research | |
National Science Foundation | |
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique | |
Science and Technology Facilities Council | |
European Commission | |
Deutsche Forschungsgemeinschaft | VA 1031/1-1 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | |
Generalitat Valenciana | |
Hungarian Scientific Research Fund | |
Instituto Nazionale di Fisica Nucleare | |
Gottfried Wilhelm Leibniz Universität Hannover | |
Max-Planck-Gesellschaft | |
Centre National de la Recherche Scientifique | |
MPS España | |
Agencia Estatal de Investigación | |
Istituto Nazionale di Fisica Nucleare |