Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

Virgo Collaboration

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded.

Original languageEnglish
Article number231108
Pages (from-to)1-10
Number of pages10
JournalPhysical Review Letters
Volume123
Issue number23
DOIs
Publication statusPublished - 5 Dec 2019

Funding

The authors gratefully acknowledge the support of the Max Planck Society, Leibniz Universität Hannover, and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project Grant No. VA 1031/1-1 and under Germany’s Excellence Strategy EXC 2123 QuantumFrontiers for the construction, installation, and operation of the squeezed light source. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Spanish Agencia Estatal de Investigación, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Center of Poland, the Swiss National Science Foundation (SNSF), the European Commission, and the Hungarian Scientific Research Fund (OTKA). The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen, Germany, for provision of computational resources. [1] 1 J. Aasi ( LIGO Scientific Collaboration ) , Classical Quantum Gravity 32 , 074001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/7/074001 [2] 2 F. Acernese ( Virgo Collaboration ) , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [3] 3 K. L. Dooley , Classical Quantum Gravity 33 , 075009 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/7/075009 [4] 4 V. B. Braginsky , Sov. Phys. JETP 26 , 831 ( 1968 ). SPHJAR 0038-5646 [5] 5 M. T. Jaekel and S. Reynaud , Europhys. Lett. 13 , 301 ( 1990 ). EULEEJ 0295-5075 10.1209/0295-5075/13/4/003 [6] 6 C. M. Caves , Phys. Rev. D 23 , 1693 ( 1981 ). PRVDAQ 0556-2821 10.1103/PhysRevD.23.1693 [7] 7 M. Punturo , Classical Quantum Gravity 27 , 084007 ( 2010 ). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084007 [8] 8 Y. Takeno , M. Yukawa , H. Yonezawa , and A. Furusawa , Opt. Express 15 , 4321 ( 2007 ). OPEXFF 1094-4087 10.1364/OE.15.004321 [9] 9 H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Phys. Rev. Lett. 117 , 110801 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.117.110801 [10] 10 R. E. Slusher , L. W. Hollberg , B. Yurke , J. C. Mertz , and J. F. Valley , Phys. Rev. Lett. 55 , 2409 ( 1985 ). PRLTAO 0031-9007 10.1103/PhysRevLett.55.2409 [11] 11 M. Mehmet and H. Vahlbruch , Classical Quantum Gravity 36 , 015014 ( 2019 ). CQGRDG 0264-9381 10.1088/1361-6382/aaf448 [12] 12 LIGO Scientific Collaboration , Nat. Phys. 7 , 962 ( 2011 ). NPAHAX 1745-2473 10.1038/nphys2083 [13] 13 H. Grote , K. Danzmann , K. L. Dooley , R. Schnabel , J. Slutsky , and H. Vahlbruch , Phys. Rev. Lett. 110 , 181101 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.110.181101 [14] 14 AEI Hannover, research news, https://www.geo600.org/1897380/gravitational-wave-detectors-begin-third-observation-run . [15] 15 J. Lough (to be published). [16] 16 LIGO Scientific Collaboration , Nat. Photonics 7 , 613 ( 2013 ). NPAHBY 1749-4885 10.1038/nphoton.2013.177 [17] 17 M. Tse , preceding Letter, Phys. Rev. Lett. 123 , 231107 ( 2019 ). PRLTAO 0031-9007 10.1103/PhysRevLett.123.231107 [18] 18 AdV Squeezing Working Group ,

FundersFunder number
National Science Center of Poland
Netherlands Organization for Scientific Research
National Science Foundation
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique
Science and Technology Facilities Council
European Commission
Deutsche ForschungsgemeinschaftVA 1031/1-1
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Generalitat Valenciana
Hungarian Scientific Research Fund
Instituto Nazionale di Fisica Nucleare
Gottfried Wilhelm Leibniz Universität Hannover
Max-Planck-Gesellschaft
Centre National de la Recherche Scientifique
MPS España
Agencia Estatal de Investigación
Istituto Nazionale di Fisica Nucleare

    Fingerprint

    Dive into the research topics of 'Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light'. Together they form a unique fingerprint.

    Cite this