Individual-based simulation of sexual selection: A quantitative genetic approach

D. van Dijk, P.M.A. Sloot, J.C. Tay, M.C. Schut

Research output: Contribution to JournalArticleAcademicpeer-review


Sexual selection has been mathematically modeled using quantitative genetics as well as population genetics. Two-locus simulation models have been used to study the evolution of male display and female preference. We present an individual-based simulation model of sexual selection in a quantitative genetic context. We show that under certain conditions Fisherian self-reinforcing sexual selection takes effect, predicted by Lande's analytic model of female choice. We also show that the dynamics involved in the co-evolution of male display and female preference is much more complex than mathematics would predict. We therefore argue that the study of sexual selection through individual-based simulation could give new and more realistic insight into a world dominated by overly simplified equations.
Original languageEnglish
Pages (from-to)1997-2005
JournalProcedia Computer Science
Publication statusPublished - 2010


Dive into the research topics of 'Individual-based simulation of sexual selection: A quantitative genetic approach'. Together they form a unique fingerprint.

Cite this