TY - JOUR
T1 - Intelligence demands flexibility
T2 - Individual differences in attentional disengagement strongly predict the general cognitive ability of mice
AU - Crawford, D.W.
AU - Bendrath, S.
AU - Manzano, M.D.
AU - Mehta, A.
AU - Patel, H.M.
AU - Piela, M.C.
AU - Sauce, B.
AU - Matzel, L.D.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - © 2020General cognitive ability (or general intelligence; g) is a latent variable that describes performance across a broad array of cognitive skills. This general influence on cognitive ability varies between individuals and shares a similar structure in both humans and mice. Evidence suggests that much of the variation in general intelligence is related to the efficacy of the working memory system. We have previously observed that one component of the working memory system, selective attention, disproportionately accounts for the relationship between working memory and general intelligence in genetically heterogeneous mice. In the three studies reported here, we test a hypothesis that emerges from human behavioral studies which suggests that attentional disengagement, a sub-component of selective attention, critically mediates its relationship with g. Studies 1 and 2 both assess the factor loadings (on a principal component analysis) of the performance of mice on an array of learning tasks as well as tasks designed to make explicit demands on attentional disengagement. We find that attentional disengagement tasks load more highly than measures of cognitive performance that place less explicit demands on disengagement and that performance in these disengagement tasks is strongly predictive of the general cognitive performance of individual animals. In Study 3 we observed that groups of mice (young and old) with known differences in general cognitive abilities differ more on a discrimination task that requires attentional disengagement than on a simple discrimination task with fewer demands on disengagement. In total, these results provide support for the hypothesis that attentional disengagement is strongly related to general intelligence, and that variations in this ability may contribute to both individual differences in intelligence as well as age-related cognitive declines.
AB - © 2020General cognitive ability (or general intelligence; g) is a latent variable that describes performance across a broad array of cognitive skills. This general influence on cognitive ability varies between individuals and shares a similar structure in both humans and mice. Evidence suggests that much of the variation in general intelligence is related to the efficacy of the working memory system. We have previously observed that one component of the working memory system, selective attention, disproportionately accounts for the relationship between working memory and general intelligence in genetically heterogeneous mice. In the three studies reported here, we test a hypothesis that emerges from human behavioral studies which suggests that attentional disengagement, a sub-component of selective attention, critically mediates its relationship with g. Studies 1 and 2 both assess the factor loadings (on a principal component analysis) of the performance of mice on an array of learning tasks as well as tasks designed to make explicit demands on attentional disengagement. We find that attentional disengagement tasks load more highly than measures of cognitive performance that place less explicit demands on disengagement and that performance in these disengagement tasks is strongly predictive of the general cognitive performance of individual animals. In Study 3 we observed that groups of mice (young and old) with known differences in general cognitive abilities differ more on a discrimination task that requires attentional disengagement than on a simple discrimination task with fewer demands on disengagement. In total, these results provide support for the hypothesis that attentional disengagement is strongly related to general intelligence, and that variations in this ability may contribute to both individual differences in intelligence as well as age-related cognitive declines.
U2 - 10.1016/j.lmot.2020.101657
DO - 10.1016/j.lmot.2020.101657
M3 - Article
VL - 71
JO - Learning and Motivation
JF - Learning and Motivation
SN - 0023-9690
M1 - 101657
ER -