It remains a challenge to determine whether children resemble their parents due to nature, nurture, or a mixture of both. Here we used a design that exploits the distinction between transmitted and non-transmitted alleles in genetic transmission from parent to offspring. Two separate polygenic scores (PGS) were calculated on the basis of the transmitted and non-transmitted alleles. The effect of the non-transmitted PGS is necessarily mediated by parental phenotypes, insofar as they contribute to the rearing environment of the offspring (genetic nurturing). We calculated transmitted and non-transmitted PGSs associated with adult educational attainment (EA) and PGSs associated with childhood ADHD in a general population sample of trios, i.e. child or adult offspring and their parents (N = 1120-2518). We tested if the EA and ADHD (non-)transmitted PGSs were associated with childhood academic achievement and ADHD in offspring. Based on the earlier findings for shared environment, we hypothesized to find genetic nurturing for academic achievement, but not for ADHD. In adults, both transmitted (R2 = 7.6%) and non-transmitted (R2 = 1.7%) EA PGSs were associated with offspring EA, evidencing genetic nurturing. In children around age 12, academic achievement was associated with the transmitted EA PGSs (R2 = 5.7%), but we found no support for genetic nurturing (R2 ~ 0.1%). The ADHD PGSs were not significantly associated with academic achievement (R2 ~ 0.6%). ADHD symptoms in children were only associated with transmitted EA PGSs and ADHD PGSs (R2 = 1-2%). Based on these results, we conclude that the associations between parent characteristics and offspring outcomes in childhood are mainly to be attributable to the effects of genes that are shared by parents and children.

Original languageEnglish
Pages (from-to)221-232
Number of pages12
JournalBehavior Genetics
Issue number4
Publication statusPublished - Jul 2020

Fingerprint Dive into the research topics of 'Intergenerational Transmission of Education and ADHD: Effects of Parental Genotypes'. Together they form a unique fingerprint.

Cite this