Abstract
The northern Upper Rhine Graben, situated in the central part of the European Cenozoic rift system, is currently characterized by low intra-plate seismicity. Historical earthquakes have not been large enough to produce surface rupturing. Moreover, the records of Quaternary surface processes and human modifications are presumably better preserved than the record of the relatively slow tectonic deformation. In order to gain information on the neotectonic activity and paleoseismicity in this setting, the geological and geomorphological records of fault movements along a segment of the Western Border Fault (WBF) were studied using an integration of techniques in paleoseismology, structural analysis and shallow geophysics. The WBF segment investigated follows a 20 km long linear scarp of unclear origin. A series of geophysical measurements were performed and the results suggested that near-surface deformation structures are present at the segments' southern end. Several trenches opened at this location revealed fault structures with consistent extensional style and a maximum vertical displacement of 0.5 m. In one trench, the deformation structures were dated between 19 and 8 ka. Assuming the deformation has been caused by an earthquake, a M
Original language | English |
---|---|
Pages (from-to) | 39-66 |
Journal | Tectonophysics |
Volume | 406 |
DOIs | |
Publication status | Published - 2005 |