Abstract
How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species.
Methods
In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA–habitat relationships were compared among these three groups.
Key Results
Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA–habitat association than high-variability species.
Conclusions
For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species’ niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape.
Original language | English |
---|---|
Pages (from-to) | 1173-1182 |
Number of pages | 10 |
Journal | Annals of Botany |
Volume | 121 |
Issue number | 6 |
Early online date | 3 Feb 2018 |
DOIs | |
Publication status | Published - 11 May 2018 |
Funding
This work is a part of Dong He’s PhD programme, directed by Fangliang He who provided great financial and intellectual support. We are grateful to Wensheng Shu and his research group for the soil survey. David Deane, Bill Shipley, Ruben Milla and an anonymous reviewer offered valuable comments on an early version of the manuscript. We would like to thank Mingshan Xu and Huiling Zhu for the help to prepare the Figure 2. A number of colleagues at Sun Yat-sen University and volunteers from around South China are thanked for assistance with fieldwork. This study was financially supported by the National Key R & D Program of China (2017YFC0506100, 2017YFC0506101) and the National Natural Science Foundation of China (31570426 and 31622014) to C.C., and the 1000 Plan Grant to Fangliang He.
Funders | Funder number |
---|---|
National Key R & D Program of China | 2017YFC0506100, 2017YFC0506101 |
National Natural Science Foundation of China | 31622014, 31570426 |
Keywords
- Environmental gradient
- intraspecific trait variation
- niche
- soil nitrogen limitation
- specific leaf area