Inventory of organisms interfering with transmission of a marine trematode

J.E. Welsh, J. van der Meer, C.P.D. Brussaard, D.W. Thieltges

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    It has increasingly been recognized that organisms can interfere with parasitic free-living stages, preventing them from infecting their specified host and thus reducing infection levels. This common phenomenon in freshwater and terrestrial systems has been termed the 'dilution effect' and, so far, is poorly studied in marine systems. Ten common intertidal organisms found in the Dutch Wadden Sea (North Sea) were tested to establish their effects on the free-living cercarial stages of the trematode parasite Himasthla elongata. Most species tested resulted in a significant reduction in cercariae over a 3 hr time period. The amphipod Gammarus marinus removed 100% of the cercariae, while other effective diluters were Crangon crangon (93%), Sargassum muticum (87%), Semibalanus balanoides (71%), Crassostrea gigas (67%), Hemigrapsus takanoi (>54%), Crassostrea gigas shells (44%) and Idotea balthica (24%). In contrast, mixed shells (Cerastoderma edule, Mytilus edulis, Ensis americanus and Littorina littorea) and Fucus versiculosus had no significant effect. These results suggest that dilution effects are widespread in the trematode of H. elongata, with potentially strong effects on its population dynamics. Copyright © Marine Biological Association of the United Kingdom 2014.
    Original languageEnglish
    Pages (from-to)697-702
    JournalJournal of the Marine Biological Association of the United Kingdom
    Volume94
    Issue number4
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Dive into the research topics of 'Inventory of organisms interfering with transmission of a marine trematode'. Together they form a unique fingerprint.

    Cite this