TY - JOUR
T1 - Investigating the central metabolism of Clostridium thermosuccinogenes
AU - Koendjbiharie, Jeroen Girwar
AU - Wiersma, Kilian
AU - van Kranenburg, Richard
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that on xylose did not provide any leads to potential transaldolase genes or alternative pathways connecting the C5 with the C3/C6 metabolism. Enzyme assays showed xylulokinase to prefer GTP over ATP, which could be of importance for engineering xylose utilization in related thermophilic species of industrial relevance. Furthermore, the gene responsible for malate dehydrogenase was identified via heterologous expression in Escherichia coli and subsequent assays with the cell extract, which has proven to be a simple and powerful method for the basal characterization of thermophilic enzymes.
AB - Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that on xylose did not provide any leads to potential transaldolase genes or alternative pathways connecting the C5 with the C3/C6 metabolism. Enzyme assays showed xylulokinase to prefer GTP over ATP, which could be of importance for engineering xylose utilization in related thermophilic species of industrial relevance. Furthermore, the gene responsible for malate dehydrogenase was identified via heterologous expression in Escherichia coli and subsequent assays with the cell extract, which has proven to be a simple and powerful method for the basal characterization of thermophilic enzymes.
UR - http://www.scopus.com/inward/record.url?scp=85049360624&partnerID=8YFLogxK
U2 - 10.1128/AEM.00363-18
DO - 10.1128/AEM.00363-18
M3 - Article
SN - 0099-2240
VL - 84
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 13
M1 - e00363-18
ER -