Abstract
The attenuation coefficient provides a quantitative parameter for tissue characterization and can be calculated from optical coherence tomography (OCT) data, but accurate determination requires compensation for the confocal function. We present extensive measurement series for extraction of the focal plane and the apparent Rayleigh length from the ratios of OCT images acquired with different focus depths and compare these results with two alternative approaches. By acquiring OCT images for a range of different focus depths the optimal focus plane difference is determined for intralipid and titanium oxide (TiO2) phantoms with different scatterer concentrations, which allows for calculation of the attenuation coefficient corrected for the confocal function. The attenuation coefficient is determined for homogeneous intralipid and TiO2 samples over a wide range of concentrations. We further demonstrate very good reproducibility of the determined attenuation coefficient of layers with identical scatter concentrations in a multi-layered phantom. Finally, this method is applied to in vivo retinal data.
Original language | English |
---|---|
Pages (from-to) | 6814-6830 |
Number of pages | 17 |
Journal | Biomedical Optics Express |
Volume | 12 |
Issue number | 11 |
Early online date | 7 Oct 2021 |
DOIs | |
Publication status | Published - 1 Nov 2021 |
Bibliographical note
Funding Information:Heidelberg Engineering GmbH; Health?Holland, Topsector Life Sciences & Health; Holland High Tech, Topsector High Tech Systems and Materials. We acknowledge funding by Heidelberg Engineering GmbH. The collaboration project is co-funded by the PPP Allowance made available by Health?Holland, Topsector Life Sciences & Health, and by Holland High Tech, Topsector High Tech Systems and Materials, to stimulate public-private partnerships.
Publisher Copyright:
© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement