Abstract
Nature-based solutions are increasingly suggested for mitigating coastal flood risks in the face of climate change. Managed realignment (MR), a coastal adaptation strategy that entails the landward realignment of coastal defences to restore coastal habitats (often salt marshes), plays a pivotal role in implementing nature-based solutions in the coastal zone. Across Europe, more than 130 sites have been implemented so far, often to harness their potential to mitigate coastal flood risks while restoring coastal habitats (ABPmer, 2021). However, local communities often oppose MR projects, not only because they are seen as returning hard-won land to the sea but also because their coastal protection function is less trusted than traditional hard engineering techniques. This scepticism has foundation. The proclaimed coastal protection function of MRs is based on a broad body of literature on the protective function of natural salt marshes. However, contrary to natural salt marshes, MRs are often semi-enclosed tidal basins with narrow breaches to the open sea/estuary. Recent studies indicate that MR-internal hydrodynamics may significantly reduce their coastal protection, depending on their engineering design. To successfully implement MR, a much-improved scientific knowledge base is needed, as well as a process for addressing community concerns and genuinely engaging stakeholders in decision-making beyond the usual obligatory consultancy approach. Here, we propose the co-production of scientific knowledge with local communities and stakeholders to optimize the success of coastal nature-based solutions and promote community acceptance.
Original language | English |
---|---|
Pages (from-to) | 2879-2890 |
Number of pages | 12 |
Journal | Natural Hazards and Earth System Sciences |
Volume | 22 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 Sept 2022 |
Externally published | Yes |
Bibliographical note
Funding Information:This research has been supported by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101037097 (REST-COAST project) and by the German Bundesministerium für Bildung und Forschung (BMBF) under grant agreement no. 03F0860H (ECAS-BALTIC project).
Publisher Copyright:
© 2022 Mark Schuerch et al.