Ion Homeostasis and Metabolome Analysis of Arabidopsis 14-3-3 Quadruple Mutants to Salt Stress

Jing Gao, Paula J.M. van Kleeff, Mark H. de Boer, Alexander Erban, Joachim Kopka, Dirk K. Hincha, Albertus H. de Boer*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Many proteins with defined functions in salt stress adaptation are controlled through interactions with members of the 14-3-3 family. In the present study, we generated three 14-3-3 quadruple knockout mutants (qKOs: klpc, klun, and unpc) to study the role of six non-epsilon group 14-3-3 proteins for salt stress adaptation. The relative growth inhibition under 100 mM of NaCl stress was the same for wild-type (Wt) and qKOs, but the accumulation of Na+ in the shoots of klpc was significantly lower than that in Wt. This difference correlated with the higher expression of the HKT1 gene in klpc. Considering the regulatory role of 14-3-3 proteins in metabolism and the effect of salt stress on metabolite accumulation, we analyzed the effect of a 24-h salt treatment on the root metabolome of nutrient solution-grown genotypes. The results indicated that the klpc mutant had metabolome responses that were different from those of Wt. Notably, the reducing sugars, glucose and fructose, were lower in klpc under control and salt stress. On the other hand, their phosphorylated forms, glucose-6P and fructose-6P, were lower under salt stress as compared to Wt. This study provided insight into the functions of the 14-3-3 proteins from non-epsilon group members. In summary, it was found that these proteins control ion homeostasis and metabolite composition under salt stress conditions and non-stressed conditions. The analyses of single, double, and triple mutants that modify subsets from the most effective qKO mutant (klpc) may also reveal the potential redundancy for the observed phenotypes.

Original languageEnglish
Article number697324
Pages (from-to)1-18
Number of pages18
JournalFrontiers in Plant Science
Volume12
Issue numberSeptember
Early online date13 Sep 2021
DOIs
Publication statusPublished - Sep 2021

Bibliographical note

Funding Information:
The project was supported by a grant from the Netherlands Organization for Scientific Research (NWO; 817.02.006) to AB and a grant from the National Natural Science Foundation of China (No. 31802146) to JG.

Publisher Copyright:
© Copyright © 2021 Gao, van Kleeff, de Boer, Erban, Kopka, Hincha and de Boer.

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Keywords

  • 14-3-3
  • ion homeostasis
  • metabolism
  • plant abiotic stress
  • salinity

Fingerprint

Dive into the research topics of 'Ion Homeostasis and Metabolome Analysis of Arabidopsis 14-3-3 Quadruple Mutants to Salt Stress'. Together they form a unique fingerprint.

Cite this