TY - JOUR
T1 - Key role for mast cells in nonatopic asthma
AU - Kraneveld, A.D.
AU - Van der Kleij, H.P.M.
AU - Kool, M.
AU - Van Houwelingen, A.H.
AU - Weitenberg, A.C.D.
AU - Redegeld, F.A.M.
AU - Nijkamp, F.P.
PY - 2002/8/15
Y1 - 2002/8/15
N2 - The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/Wv and Sl/Sld mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/Wv mice (bone marrow-derived mast cells→W/Wv) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell→W/Wv mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicletreated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.
AB - The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/Wv and Sl/Sld mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/Wv mice (bone marrow-derived mast cells→W/Wv) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell→W/Wv mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicletreated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.
UR - http://www.scopus.com/inward/record.url?scp=0037103337&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.169.4.2044
DO - 10.4049/jimmunol.169.4.2044
M3 - Article
SN - 0022-1767
VL - 169
SP - 2044
EP - 2053
JO - Journal of Immunology
JF - Journal of Immunology
IS - 4
ER -