Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes

Alice Limonciel, Lydia Aschauer, Anja Wilmes, Sinikka Prajczer, Martin O Leonard, Walter Pfaller, Paul Jennings

Research output: Contribution to JournalArticleAcademicpeer-review


Technological developments are driving in vitro methods towards integrated "omic" strategies. However, there is still an over reliance on classical viability assays for dose range finding. Such assays are not readily suited to the investigation of subtle alterations in cell function and most require termination of the experiment, which makes it difficult to monitor temporal alterations in repeat-dose long term exposure experiments. To this end, we investigated the use of lactate production as a marker of cell stress in long term repeat dose experiments. We conducted daily exposures to eight compounds at five concentrations for 14 days on human renal proximal tubular cells (RPTEC/TERT1), human hepatoma cells (HepaRG) and mouse fibroblasts (BALB-3T3) cells. Compounds were chosen from a training set used in the 7th EU Framework project Predict-IV and consisted of amiodarone, diclofenac, troglitazone, cadmium chloride, cephaloridine, cidofovir, cyclosporine A and buflomedil. At days 1, 3, 7 and 14, lactate was measured in the supernatant medium. At day 14, cells were assayed for resazurin reduction capability and subsequently lysed in methanol for ATP determination. Compound-induced loss of viability was comparable across all cell lines. For all cell types, when cell viability was compromised at day 14, lactate production was induced during the treatment period. In some situations, lactate also fell below control values, indicating cell death. Thus, temporal alterations in supernatant lactate provides information on the time and concentration of stress induction and the time and concentration where cell death becomes the dominant factor. Supernatant lactate production is a simple, cheap and non-invasive parameter. Since many molecular pathways converge on the glycolytic pathway, enhanced lactate production may be considered as a global marker of sub-lethal injury and thus an ideal marker for investigating temporal alterations in long term repeat dose testing in vitro regimes.

Original languageEnglish
Pages (from-to)1855-62
Number of pages8
JournalToxicology in Vitro
Issue number8
Publication statusPublished - Dec 2011


  • 3T3 Cells
  • Adenosine Triphosphate
  • Animals
  • Biomarkers
  • Cell Line
  • Cell Line, Tumor
  • Cell Survival
  • Drug-Related Side Effects and Adverse Reactions
  • Humans
  • Lactic Acid
  • Mice
  • Toxicity Tests
  • Comparative Study
  • Journal Article
  • Research Support, Non-U.S. Gov't


Dive into the research topics of 'Lactate is an ideal non-invasive marker for evaluating temporal alterations in cell stress and toxicity in repeat dose testing regimes'. Together they form a unique fingerprint.

Cite this