TY - JOUR
T1 - Looping and clustering model for the organization of partitioning proteins on the bacterial genome
AU - Walter, Jean-Charles
AU - David, Gabriel
AU - Dorignac, Jérôme
AU - Geniet, Frédéric
AU - Palmeri, John
AU - Parmeggiani, Andrea
AU - Wingreen, Ned S
AU - Broedersz, Chase P.
PY - 2018
Y1 - 2018
N2 - The bacterial genome is organized in a structure called the nucleoid by a variety of associated proteins. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the Looping and Clustering (LC) model, which employs a statistical physics approach to describe protein-DNA complexes. The LC model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and the configurational and loop entropy of this protein-DNA cluster. Indeed, we show that the protein interaction strength determines the "tightness" of the loopy protein-DNA complex. With this approach we consider the genomic organization of such a protein-DNA cluster around a single high-affinity binding site. Thus, our model provides a theoretical framework to quantitatively compute the binding profiles of ParB-like proteins around a cognate (parS) binding site.
AB - The bacterial genome is organized in a structure called the nucleoid by a variety of associated proteins. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the Looping and Clustering (LC) model, which employs a statistical physics approach to describe protein-DNA complexes. The LC model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and the configurational and loop entropy of this protein-DNA cluster. Indeed, we show that the protein interaction strength determines the "tightness" of the loopy protein-DNA complex. With this approach we consider the genomic organization of such a protein-DNA cluster around a single high-affinity binding site. Thus, our model provides a theoretical framework to quantitatively compute the binding profiles of ParB-like proteins around a cognate (parS) binding site.
UR - http://arxiv.org/abs/1707.01373
UR - https://www.mendeley.com/catalogue/c9e240b3-5eef-38bb-a891-5527fc2a126e/
M3 - Article
SN - 1367-2630
VL - 20
SP - 035002
JO - New Journal of Physics
JF - New Journal of Physics
ER -