TY - JOUR
T1 - Minimizing bed occupancy variance by scheduling patients under uncertainty
AU - van den Broek d'Obrenan, Anne
AU - Ridder, Ad
AU - Roubos, Dennis
AU - Stougie, Leen
PY - 2020/10/1
Y1 - 2020/10/1
N2 - In this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results.
AB - In this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results.
KW - Heuristics
KW - Operations research in health services
KW - Scheduling
KW - Simulation
KW - Uncertainty modeling
UR - http://www.scopus.com/inward/record.url?scp=85083276018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083276018&partnerID=8YFLogxK
U2 - 10.1016/j.ejor.2020.03.026
DO - 10.1016/j.ejor.2020.03.026
M3 - Article
AN - SCOPUS:85083276018
SN - 0377-2217
VL - 286
SP - 336
EP - 349
JO - European Journal of Operational Research
JF - European Journal of Operational Research
IS - 1
ER -