Model-based quantification of metabolic interactions from dynamic microbial-community data

Mark Hanemaaijer, Brett G. Olivier, Wilfred F M Röling, Frank J. Bruggeman, Bas Teusink

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

An important challenge in microbial ecology is to infer metabolic-exchange fluxes between growing microbial species from community-level data, concerning species abundances and metabolite concentrations. Here we apply a model-based approach to integrate such experimental data and thereby infer metabolic-exchange fluxes. We designed a synthetic anaerobic co-culture of Clostridium acetobutylicum and Wolinella succinogenes that interact via interspecies hydrogen transfer and applied different environmental conditions for which we expected the metabolic-exchange rates to change. We used stoichiometric models of the metabolism of the two microorganisms that represents our current physiological understanding and found that this understanding - the model - is sufficient to infer the identity and magnitude of the metabolic-exchange fluxes and it suggested unexpected interactions. Where the model could not fit all experimental data, it indicates specific requirement for further physiological studies. We show that the nitrogen source influences the rate of interspecies hydrogen transfer in the co-culture. Additionally, the model can predict the intracellular fluxes and optimal metabolic exchange rates, which can point to engineering strategies. This study therefore offers a realistic illustration of the strengths and weaknesses of modelbased integration of heterogenous data that makes inference of metabolic-exchange fluxes possible from community-level experimental data.

Original languageEnglish
Article numbere0173183
JournalPLoS ONE
Volume12
Issue number3
DOIs
Publication statusPublished - 1 Mar 2017

    Fingerprint

Cite this