TY - JOUR
T1 - Model-based reconstructions for intravoxel incoherent motion and diffusion tensor imaging parameter map estimations
AU - Rauh, Susanne S.
AU - Maier, Oliver
AU - Gurney-Champion, Oliver J.
AU - Hooijmans, Melissa T.
AU - Stollberger, Rudolf
AU - Nederveen, Aart J.
AU - Strijkers, Gustav J.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Intravoxel incoherent motion (IVIM) imaging and diffusion tensor imaging (DTI) facilitate noninvasive quantification of tissue perfusion and diffusion. Both are promising biomarkers in various diseases and a combined acquisition is therefore desirable. This comes with challenges, including noisy parameter maps and long scan times, especially for the perfusion fraction f and pseudo-diffusion coefficient D*. A model-based reconstruction has the potential to overcome these challenges. As a first step, our goal was to develop a model-based reconstruction framework for IVIM and combined IVIM-DTI parameter estimation. The IVIM and IVIM-DTI models were implemented in the PyQMRI model-based reconstruction framework and validated with simulations and in vivo data. Commonly used voxel-wise nonlinear least-squares fitting was used as the reference. Simulations with the IVIM and IVIM-DTI models were performed with 100 noise realizations to assess accuracy and precision. Diffusion-weighted data were acquired for IVIM reconstruction in the liver (n = 5), as well as for IVIM-DTI in the kidneys (n = 5) and lower-leg muscles (n = 6) of healthy volunteers. The median and interquartile range (IQR) values of the IVIM and IVIM-DTI parameters were compared to assess bias and precision. With model-based reconstruction, the parameter maps exhibited less noise, which was most pronounced in the f and D* maps, both in the simulations and in vivo. The bias values in the simulations were comparable between model-based reconstruction and the reference method. The IQR was lower with model-based reconstruction compared with the reference for all parameters. In conclusion, model-based reconstruction is feasible for IVIM and IVIM-DTI and improves the precision of the parameter estimates, particularly for f and D* maps.
AB - Intravoxel incoherent motion (IVIM) imaging and diffusion tensor imaging (DTI) facilitate noninvasive quantification of tissue perfusion and diffusion. Both are promising biomarkers in various diseases and a combined acquisition is therefore desirable. This comes with challenges, including noisy parameter maps and long scan times, especially for the perfusion fraction f and pseudo-diffusion coefficient D*. A model-based reconstruction has the potential to overcome these challenges. As a first step, our goal was to develop a model-based reconstruction framework for IVIM and combined IVIM-DTI parameter estimation. The IVIM and IVIM-DTI models were implemented in the PyQMRI model-based reconstruction framework and validated with simulations and in vivo data. Commonly used voxel-wise nonlinear least-squares fitting was used as the reference. Simulations with the IVIM and IVIM-DTI models were performed with 100 noise realizations to assess accuracy and precision. Diffusion-weighted data were acquired for IVIM reconstruction in the liver (n = 5), as well as for IVIM-DTI in the kidneys (n = 5) and lower-leg muscles (n = 6) of healthy volunteers. The median and interquartile range (IQR) values of the IVIM and IVIM-DTI parameters were compared to assess bias and precision. With model-based reconstruction, the parameter maps exhibited less noise, which was most pronounced in the f and D* maps, both in the simulations and in vivo. The bias values in the simulations were comparable between model-based reconstruction and the reference method. The IQR was lower with model-based reconstruction compared with the reference for all parameters. In conclusion, model-based reconstruction is feasible for IVIM and IVIM-DTI and improves the precision of the parameter estimates, particularly for f and D* maps.
UR - http://www.scopus.com/inward/record.url?scp=85152781702&partnerID=8YFLogxK
U2 - 10.1002/nbm.4927
DO - 10.1002/nbm.4927
M3 - Article
SN - 0952-3480
VL - 36
JO - NMR in Biomedicine
JF - NMR in Biomedicine
IS - 8
M1 - e4927
ER -