Abstract
Understanding climate change effects on forests is important considering the role forests play in mitigating climate change. We studied the effects of changes in temperature, rainfall, atmospheric carbon dioxide (CO2) concentration, solar radiation, and number of wet days (as a measure of rainfall intensity) on net primary productivity (NPP) of the Zambian Zambezi teak forests along a rainfall gradient. Using 1960-1989 as a baseline, we projected changes in NPP for the end of the 21st century (2070-2099). We adapted the parameters of the dynamic vegetation model, LPJ-GUESS, to simulate the growth of Zambian forests at three sites along a moisture gradient receiving annual rainfall of between 700 and more than 1000 mm. The adjusted plant functional type was tested against measured data. We forced the model with contemporary climate data (1960-2005) and with climatic forecasts of an ensemble of five general circulation models (GCMs) following Representative Concentration Pathways (RCPs) RCP4.5 and RCP8.5. We used local soil parameter values to characterize texture and measured local tree parameter values for maximum crown area, wood density, leaf longevity, and allometry. The results simulated with the LPJGUESS model improved when we used these newly generated local parameters, indicating that using local parameter values is essential to obtaining reliable simulations at site level. The adapted model setup provided a baseline for assessing the potential effects of climate change on NPP in the studied Zambezi teak forests. Using this adapted model version, NPP was projected to increase by 1.77% and 0.69% at the wetter Kabompo and by 0.44% and 0.10% at the intermediate Namwala sites under RCP8.5 and RCP4.5 respectively, especially caused by the increased CO2 concentration by the end of the 21st century. However, at the drier Sesheke site, NPP would respectively decrease by 0.01% and 0.04% by the end of the 21st century under RCP8.5 and RCP4.5. The projected decreased NPP under RCP8.5 at the Sesheke site results from the reduced rainfall coupled with increasing temperature. We thus demonstrated that differences in the amount of rainfall received in a site per year influence the way in which climate change will affect forest resources. The projected increase in CO2 concentration would thus have more effects on NPP in high rainfall receiving areas, while in arid regions, NPP would be affected more by the changes in rainfall and temperature. CO2 concentrations would therefore be more important in forests that are generally not temperature- or precipitation-limited; however, precipitation will continue to be the limiting factor in the drier sites.
Original language | English |
---|---|
Pages (from-to) | 3853-3867 |
Number of pages | 15 |
Journal | Biogeosciences |
Volume | 16 |
Issue number | 19 |
DOIs | |
Publication status | Published - 8 Oct 2019 |
Funding
Acknowledgements. We would like to thank the Copperbelt University, the HEART project of the NUFFIC-NICHE programme, the International Foundation for Science (IFS), and the Schlumberger Foundation Faculty for the Future for providing financial support to conduct this research. We sincerely thank the LPJ-GUESS model development team at Lund University in Sweden for providing us with the model code and allowing us to use their model in our research. Financial support. This research was supported by the Copperbelt
Funders | Funder number |
---|---|
HEART | |
NUFFIC-NICHE | |
Schlumberger Foundation Faculty for the Future | |
International Foundation for Science | IFS |
Lunds Universitet | D/5466-1 |
Copperbelt University |