Molecular motors robustly drive active gels to a critically connected state

J. Alvarado, M. Sheinman, A. Sharma, F.C. Mac Kintosh

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network. © 2013 Macmillan Publishers Limited.
Original languageEnglish
Pages (from-to)591-597
JournalNature Physics
Volume9
Issue number9
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Molecular motors robustly drive active gels to a critically connected state'. Together they form a unique fingerprint.

Cite this