TY - JOUR
T1 - Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa.
AU - Rietkerk, M.
AU - Ketner, P.
AU - Burger, J.
AU - Hoorens, B.
AU - Olff, H.
PY - 2000
Y1 - 2000
N2 - We studied the degree and scale of patchiness of vegetation and selected soil variables along a gradient of herbivore impact. The gradient consisted of a radial pattern of 'high', 'intermediate' and 'low' herbivore impact around a watering point in a semi-arid environment in Burkina Faso (West Africa). We hypothesised that, at a certain range of herbivore impact, vegetated patches alternating with patches of bare soil would occur as a consequence of plant-soil feedbacks and run-off-run-on patterns. Indeed, our transect data collected along the gradient showed that vegetated patches with a scale of about 5-10 m, alternating with bare soil, occurred at intermediate herbivore impact. When analysing the data from the experimental sites along the gradient, however, we also found a high degree of patchiness of vegetation and soil variables in case of low and high herbivore impact. For low herbivore impact, most variation was spatially explained, up to 100% for vegetation biomass and soil temperature, with a patch scale of about 0.50 m. This was due to the presence of perennial grass tufts of Cymbopogon schoenanthus. Patterns of soil organic matter and NH
AB - We studied the degree and scale of patchiness of vegetation and selected soil variables along a gradient of herbivore impact. The gradient consisted of a radial pattern of 'high', 'intermediate' and 'low' herbivore impact around a watering point in a semi-arid environment in Burkina Faso (West Africa). We hypothesised that, at a certain range of herbivore impact, vegetated patches alternating with patches of bare soil would occur as a consequence of plant-soil feedbacks and run-off-run-on patterns. Indeed, our transect data collected along the gradient showed that vegetated patches with a scale of about 5-10 m, alternating with bare soil, occurred at intermediate herbivore impact. When analysing the data from the experimental sites along the gradient, however, we also found a high degree of patchiness of vegetation and soil variables in case of low and high herbivore impact. For low herbivore impact, most variation was spatially explained, up to 100% for vegetation biomass and soil temperature, with a patch scale of about 0.50 m. This was due to the presence of perennial grass tufts of Cymbopogon schoenanthus. Patterns of soil organic matter and NH
U2 - 10.1023/A:1009828432690
DO - 10.1023/A:1009828432690
M3 - Article
SN - 1385-0237
VL - 148
SP - 207
EP - 224
JO - Plant Ecology
JF - Plant Ecology
IS - 2
ER -