Mutagenicity of halogenated and other substituted dinitrobenzenes in Salmonella typhimurium TA100 and derivatives deficient in glutathione (TA100/GSH-) and nitroreductase (TA100NR)

P R Kerklaan, S. Bouter, J.M. te Koppele, N P Vermeulen, P.J. van Bladeren, G R Mohn

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

In a previous study, it was shown that 1-chloro-2,4-dinitrobenzene (CDNB) was less mutagenic in a glutathione (GSH)-deficient derivative of Salmonella typhimurium TA100 (TA100/GSH-) than in TA100 itself, suggesting that the mutagenicity of the compound is dependent on GSH, possibly mediated by the action of a bacterial nitroreductase(s) on the CDNB-GSH conjugate. In the present study a series of mutagenicity tests were performed to determine how CDNB could be activated after reaction with GSH. In liquid preincubation assays, strains TA100, TA100/GSH- and TA100NR, a nitroreductase-deficient derivative of TA100, were treated with CDNB and its fluoro and bromo analogues (FDNB and BDNB), further with its GSH conjugate (S-GSH-DNB) and possible metabolic products, such as S-cysteine-dinitrobenzene (S-Cys-DNB) and S-methyl-dinitrobenzene (S-methyl-DNB), and with 2 more analogues, O-methyl-dinitrobenzene (O-methyl-DNB) and dinitrobenzene (DNB). CDNB, FDNB and BDNB were found to be mutagenic in TA100 and TA100NR, while TA100/GSH- was much less sensitive to the mutagenic action of these halogenated dinitrobenzenes. DNB, O-methyl-DNB, S-methyl-DNB and S-Cys-DNB induced equal numbers of His+ revertants in TA100 and TA100/GSH-, but were not mutagenic in TA100NR. S-GSH-DNB showed no mutagenic activity in any of the 3 strains under the present experimental conditions. These results suggest that the halogenated aromatics may react with bacterial DNA and produce pre-mutagenic alterations according to 2 mechanisms: direct attack on the DNA through nucleophilic substitution (SN2) of the halogen atoms; activation through GSH conjugation and subsequent nitroreduction of the conjugate or its metabolic products to more reactive intermediates.

Original languageEnglish
Pages (from-to)171-8
Number of pages8
JournalMutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Volume176
Issue number2
DOIs
Publication statusPublished - Feb 1987

Keywords

  • Bacterial Proteins
  • DNA Damage
  • DNA, Bacterial
  • Dinitrobenzenes
  • Glutathione Reductase
  • Nitrobenzenes
  • Nitroreductases
  • Oxidation-Reduction
  • Oxidoreductases
  • Salmonella typhimurium
  • Comparative Study
  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint Dive into the research topics of 'Mutagenicity of halogenated and other substituted dinitrobenzenes in Salmonella typhimurium TA100 and derivatives deficient in glutathione (TA100/GSH-) and nitroreductase (TA100NR)'. Together they form a unique fingerprint.

Cite this