Abstract
The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λmax = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λmax = 690 nm) highly fluorescent state (QF = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.
Original language | English |
---|---|
Article number | 5682 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Nature Communications |
Volume | 11 |
Issue number | 1 |
Early online date | 10 Nov 2020 |
DOIs | |
Publication status | Published - Dec 2020 |
Funding
We thank our technicians, Melanie Meiworm, Maila Reh, and Sandra Augustin, for their technical assistance. We also thank Oded Béjà, Peter Hildebrandt, and Ulrike Scheib for helpful discussion, Thomas Korte for microscopy support, and Wolfgang Bönigk for cloning support. Further we gratefully acknowledge the contribution of Saumik Sen and Rajiv K. Kar to the simulations. This work was supported by the German Research Foundation (DFG, SFB1078 (Grant No. 221545957) and Leibniz Project, PH) and the European Research Council (ERC) (Grant No. 693742 “MERA” and Grant No. 767092 “Stardust” (PH)). P.H. is a Hertie Professor for Neuroscience and supported by the Hertie Foundation. A.S., Y.A.B.S., and R.S. were supported by the German Research Foundation (DFG, SPP 1926 (Grant No. 315193289). S.A. thanks the Minerva Foundation for a postdoctoral fellowship. I.S. thanks the SFB1078 for support within the Mercator program and gratefully acknowledges funding by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 678169 “PhotoMutant”).
Funders | Funder number |
---|---|
Hertie Foundation | SPP 1926 |
Horizon 2020 Framework Programme | |
H2020 European Research Council | 678169 |
European Research Council | 693742, 767092 |
Minerva Foundation | |
Deutsche Forschungsgemeinschaft | 315193289, 221545957, SFB1078 |