Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation

R. Aerts*, R. van Logtestijn, A.M. van Staalduinen, S. Toet

*Corresponding author for this work

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    We investigated the effect of increased N-supply on productivity and potential litter decay rates of Carex species, which are the dominant vascular plant species in peatlands in the Netherlands. We hypothesized that: (1) under conditions of N-limited plant growth, increased N-supply will lead to increased productivity but will not affect C:N ratios of plant litter and potential decay rates of that litter; and (2) under conditions of P-limited plant growth, increased N-supply will not affect productivity but it will lead to lower C:N ratios in plant litter and thereby to a higher potential decay rate of that litter. These hypotheses were tested by fertilization experiments (addition of 10 g N m-2 year-1) in peatlands in which plant growth was N-limited and P-limited, respectively. We investigated the effects of fertilization on net C-fixation by plant biomass, N uptake, leaf litter chemistry and potential leaf litter decay. In a P-limited peatland, dominated by Carex lasiocarpa, there was no significant increase of net C-fixation by plant biomass upon enhanced N-supply, although N-uptake had increased significantly compared with the unfertilized control. Due to the N-fertilization the C:N ratio in the plant biomass decreased significantly. Similarly, the C:N ratio of leaf litter produced at the end of the experiment showed a significant decrease upon enhanced N-supply. The potential decay rate of that litter, measured as CO2-evolution from the litter under aerobic conditions, was significantly increase upon enhanced N-supply. In a N-limited peatland, dominated by C. acutiformis, the net C-fixation by plant biomass increased with increasing N-supply, whereas the increase in N-uptake was not significant. The C:N ratio of both living plant material and of dead leaves did not change in response to N-fertilization. The potential decay rate of the leaf litter was not affected by N-supply. The results agree with our hypotheses. This implies that atmospheric N-deposition may affect the CO2-sink function of peatlands, but the effect is dependent on the nature of nutrient limitation. In peatlands where plant growth is N-limited, increased N-supply leads to an increase in the net accumulation of C. Under conditions of P-limited plant growth, however, the net C-accumulation will decrease, because productivity is not further increased, whereas the amount of C lost through decomposition of dead organic matter is increased. As plant growth in most terrestrial ecosystems is N-limited, increased N-supply will in most peatlands lead to an increase of net C-accumulation.

    Original languageEnglish
    Pages (from-to)447-453
    Number of pages7
    JournalOecologia
    Volume104
    Issue number4
    DOIs
    Publication statusPublished - Dec 1995

    Keywords

    • CO-sink
    • Decomposition
    • Global change
    • Nitrogen deposition
    • Nutrient limitation

    Fingerprint

    Dive into the research topics of 'Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation'. Together they form a unique fingerprint.

    Cite this