Not Carbon s–p Hybridization, but Coordination Number Determines C−H and C−C Bond Length

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

A fundamental and ubiquitous phenomenon in chemistry is the contraction of both C−H and C−C bonds as the carbon atoms involved vary, in s–p hybridization, along sp3 to sp2 to sp. Our quantum chemical bonding analyses based on Kohn–Sham molecular orbital theory show that the generally accepted rationale behind this trend is incorrect. Inspection of the molecular orbitals and their corresponding orbital overlaps reveals that the above-mentioned shortening in C−H and C−C bonds is not determined by an increasing amount of s-character at the carbon atom in these bonds. Instead, we establish that this structural trend is caused by a diminishing steric (Pauli) repulsion between substituents around the pertinent carbon atom, as the coordination number decreases along sp3 to sp2 to sp.
Original languageEnglish
Pages (from-to)7074-7079
Number of pages6
JournalChemistry: A European Journal
Volume27
Issue number24
Early online date29 Jan 2021
DOIs
Publication statusPublished - 26 Apr 2021

Funding

We thank the Netherlands Organization for Scientific Research (NWO) and the Dutch Astrochemistry Network (DAN) for financial support.

FundersFunder number
Dutch Astrochemistry Network
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Fingerprint

    Dive into the research topics of 'Not Carbon s–p Hybridization, but Coordination Number Determines C−H and C−C Bond Length'. Together they form a unique fingerprint.

    Cite this