Novel selective phosphodiesterase (PDE4) inhibitors. 4. Resolution, absolute configuration, and PDE4 inhibitory activity of cis-tetra- and cis-hexahydrophthalazinones

M. der Van Mey, H. Boss, D. Couwenberg, A. Hatzelmann, G.J. Sterk, K. Goubitz, H. Schenk, H. Timmerman

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Recently, we reported that 4-catechol-substituted cis-(±)-4a,5,6,7,8,8a-hexa- and cis-(±)- 4a,5,8,8a-tetrahydro-2H-phthalazin-1-ones show potent inhibition of phosphodiesterase (PDE4) activity, while the corresponding trans racemic mixtures exhibit only weak to moderate activity. To determine the absolute configuration and PDE4 inhibitory activity of the individual cisenantiomers, several optically active phthalazinones have been synthesized. The enantiomers of the various γ-keto acids, used as starting materials, were resolved in a classical way by the formation of diastereomeric salts, and each was converted to optically active phthalazinone in an enantioselective manner. The absolute configuration of the (+)-enantiomer of cis-hexahydrophthalazinone (+)-12 was determined by x-ray crystallography. The carbon atoms at the 4a and 8a positions were found to have the S- and R-configuration, respectively. In the present series of hexa- and tetrahydrophthalazinones, stereoselectivity for PDE4 inhibition is observed; the cis-(+)-enantiomers of the phthalazinones display high inhibitory activity, whereas their (-)-counterparts exhibit only weak to moderate activity. It is likely that all cis-(+)-phthalazinones have a (4aS,8aR)-configuration and vice versa for the cis-(-)-analogues. In the current series, the N-adamantan-2-yl analogue (+)-14 shows the most potent inhibition of PDE4 (pIC
Original languageEnglish
Pages (from-to)2526-33
JournalJournal of Medicinal Chemistry
Volume45
DOIs
Publication statusPublished - 2002

Fingerprint

Dive into the research topics of 'Novel selective phosphodiesterase (PDE4) inhibitors. 4. Resolution, absolute configuration, and PDE4 inhibitory activity of cis-tetra- and cis-hexahydrophthalazinones'. Together they form a unique fingerprint.

Cite this