TY - JOUR
T1 - Object combining: a new aggressive optimization for object intensive programs: Research Articles
AU - Veldema, R.S.
AU - Jacobs, C.J.H.
AU - Hofman, R.F.H.
AU - Bal, H.E.
N1 - 1064186
PY - 2005
Y1 - 2005
N2 - Object combining tries to put objects together that have roughly the same life times in order to reduce strain on the memory manager and to reduce the number of pointer indirections during a program's execution. Object combining works by appending the fields of one object to another, allowing allocation and freeing of multiple objects with a single heap (de)allocation. Unlike object inlining, which will only optimize objects where one has a (unique) pointer to another, our optimization also works if there is no such relation. Object inlining also directly replaces the pointer by the inlined object's fields. Object combining leaves the pointer in place to allow more combining. Elimination of the pointer accesses is implemented in a separate compiler optimization pass. Unlike previous object inlining systems, reference field overwrites are allowed and handled, resulting in much more aggressive optimization. Our object combining heuristics also allow unrelated objects to be combined, for example, those allocated inside a loop; recursive data structures (linked lists, trees) can be allocated several at a time and objects that are always used together can be combined. As Java explicitly permits code to be loaded at runtime and allows the new code to contribute to a running computation, we do not require a closed-world assumption to enable these optimizations (but it will increase performance). The main focus of object combining in this paper is on reducing object (de)allocation overhead, by reducing both garbage collection work and the number of object allocations. Reduction of memory management overhead causes execution time to be reduced by up to 35%. Indirection removal further reduces execution time by up to 6%. Copyright © 2005 John Wiley & Sons, Ltd.
AB - Object combining tries to put objects together that have roughly the same life times in order to reduce strain on the memory manager and to reduce the number of pointer indirections during a program's execution. Object combining works by appending the fields of one object to another, allowing allocation and freeing of multiple objects with a single heap (de)allocation. Unlike object inlining, which will only optimize objects where one has a (unique) pointer to another, our optimization also works if there is no such relation. Object inlining also directly replaces the pointer by the inlined object's fields. Object combining leaves the pointer in place to allow more combining. Elimination of the pointer accesses is implemented in a separate compiler optimization pass. Unlike previous object inlining systems, reference field overwrites are allowed and handled, resulting in much more aggressive optimization. Our object combining heuristics also allow unrelated objects to be combined, for example, those allocated inside a loop; recursive data structures (linked lists, trees) can be allocated several at a time and objects that are always used together can be combined. As Java explicitly permits code to be loaded at runtime and allows the new code to contribute to a running computation, we do not require a closed-world assumption to enable these optimizations (but it will increase performance). The main focus of object combining in this paper is on reducing object (de)allocation overhead, by reducing both garbage collection work and the number of object allocations. Reduction of memory management overhead causes execution time to be reduced by up to 35%. Indirection removal further reduces execution time by up to 6%. Copyright © 2005 John Wiley & Sons, Ltd.
U2 - 10.1002/cpe.836
DO - 10.1002/cpe.836
M3 - Article
SN - 1532-0626
VL - 17
SP - 439
EP - 464
JO - Concurrency and Computation: Practice and Experience
JF - Concurrency and Computation: Practice and Experience
IS - 5-6
ER -