Observation-driven filtering of time-varying parameters using moment conditions

Drew Creal*, Siem Jan Koopman, André Lucas, Marcin Zamojski

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

54 Downloads (Pure)

Abstract

We develop a new and flexible semi-parametric approach for time-varying parameter models when the true dynamics are unknown. The time-varying parameters are estimated using a recursive updating scheme that is driven by the influence function of a conditional moments-based criterion. We show that the updates ensure local improvements of the conditional criterion function in expectation. The dynamics are observation driven, which yields a computationally efficient methodology that does not require advanced simulation techniques for estimation. We illustrate the new approach using both simulated and real empirical data and derive new, robust filters for time-varying scales based on characteristic functions.

Original languageEnglish
Article number105635
Pages (from-to)1-14
Number of pages14
JournalJournal of Econometrics
Volume238
Issue number2
Early online date8 Jan 2024
DOIs
Publication statusPublished - Jan 2024

Bibliographical note

Publisher Copyright:
© 2023 Elsevier B.V.

Funding

Lucas and Zamojski are grateful to the Dutch National Science Foundation (NWO, grant VICI453-09-005) for financial support.

FundersFunder number
Nederlandse Organisatie voor Wetenschappelijk OnderzoekVICI453-09-005

    Keywords

    • Dynamic models
    • GMM
    • Influence function
    • Non-linearity
    • Stable distribution

    Fingerprint

    Dive into the research topics of 'Observation-driven filtering of time-varying parameters using moment conditions'. Together they form a unique fingerprint.

    Cite this