Abstract
We consider the Poisson equations for denumerable Markov chains with unbounded cost functions. Solutions to the Poisson equations exist in the Banach space of bounded real-valued functions with respect to a weighted supremum norm such that the Markov chain is geometrically ergodic. Under minor additional assumptions the solution is also unique. We give a novel probabilistic proof of this fact using relations between ergodicity and recurrence. The expressions involved in the Poisson equations have many solutions in general. However, the solution that has a finite norm with respect to the weighted supremum norm is the unique solution to the Poisson equations. We illustrate how to determine this solution by considering three queueing examples: a multi-server queue, two independent single server queues, and a priority queue with dependence between the queues. © Springer-Verlag 2003.
Original language | English |
---|---|
Pages (from-to) | 221-236 |
Journal | Mathematical Methods of Operations Research |
Volume | 58 |
DOIs | |
Publication status | Published - 2003 |