Ontology-based query answering for probabilistic temporal data

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

We investigate ontology-based query answering for data that are both temporal and probabilistic, which might occur in contexts such as stream reasoning or situation recognition with uncertain data. We present a framework that allows to represent temporal probabilistic data, and introduce a query language with which complex temporal and probabilistic patterns can be described. Specifically, this language combines conjunctive queries with operators from linear time logic as well as probability operators. We analyse the complexities of evaluating queries in this language in various settings. While in some cases, combining the temporal and the probabilistic dimension in such a way comes at the cost of increased complexity, we also determine cases for which this increase can be avoided.
Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI Press
Pages2903-2910
ISBN (Electronic)9781577358091
Publication statusPublished - 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Funding

This work is supported by the German Research Foundation (DFG) within the Collaborative Research Center SFB 912 HAEC.

FundersFunder number
Deutsche ForschungsgemeinschaftSFB 912 HAEC

    Fingerprint

    Dive into the research topics of 'Ontology-based query answering for probabilistic temporal data'. Together they form a unique fingerprint.

    Cite this