Optimal processing of surface facial EMG to identify emotional expressions: A data-driven approach

J. M. Rutkowska, T. Ghilardi, S. V. Vacaru, J. E. van Schaik, M. Meyer, S. Hunnius, R. Oostenveld*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Surface facial electromyography (EMG) is commonly used to detect emotions from subtle facial expressions. Although there are established procedures for collecting EMG data and some aspects of their processing, there is little agreement among researchers about the optimal way to process the EMG signal, so that the study-unrelated variability (noise) is removed, and the emotion-related variability is best detected. The aim of the current paper was to establish an optimal processing pipeline for EMG data for identifying emotional expressions in facial muscles. We identified the most common processing steps from existing literature and created 72 processing pipelines that represented all the different processing choices. We applied these pipelines to a previously published dataset from a facial mimicry experiment, where 100 adult participants observed happy and sad facial expressions, whilst the activity of their facial muscles, zygomaticus major and corrugator supercilii, was recorded with EMG. We used a resampling approach and subsets of the original data to investigate the effect and robustness of different processing choices on the performance of a logistic regression model that predicted the mimicked emotion (happy/sad) from the EMG signal. In addition, we used a random forest model to identify the most important processing steps for the sensitivity of the logistic regression model. Three processing steps were found to be most impactful: baseline correction, standardisation within muscles, and standardisation within subjects. The chosen feature of interest and the signal averaging had little influence on the sensitivity to the effect. We recommend an optimal processing pipeline, share our code and data, and provide a step-by-step walkthrough for researchers.

Original languageEnglish
Pages (from-to)7331-7344
Number of pages14
JournalBehavior Research Methods
Volume56
Issue number7
Early online date21 May 2024
DOIs
Publication statusPublished - Oct 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • Emotion
  • Facial electromyography
  • Multiverse
  • Optimal pipeline
  • Surface electromyography

Fingerprint

Dive into the research topics of 'Optimal processing of surface facial EMG to identify emotional expressions: A data-driven approach'. Together they form a unique fingerprint.

Cite this