Parameter optimization for deriving bluetooth-based social network graphs

Bojan Simoski, Michel C.A. Klein, Eric Fernandes De Mello Araújo, Aart T. Van Halteren, Thabo Van Woudenberg, Kirsten E. Bevelander, Moniek Buijzen, Henri Bal

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

35 Downloads (Pure)

Abstract

Pervasive technologies such as Bluetooth (BT) are capable of detecting close proximity. As a result, they are increasingly used for deriving social networks. However, the validity and reliability of the inferred networks is questionable as evaluation procedures are often omitted. In this paper, we consider the process of deriving and evaluating a Bluetooth derived network as a parameter optimization problem. Using the BNEA algorithm, we investigate the effect of the number of detected connections, time window in which these are detected, and the direction of the resulting connection. Our results confirm the importance of conducting a throughout evaluation procedure when deriving social networks based on BT data. Going through the parameter optimization process, we are able to increase the accuracy of the derived BT networks by a maximum of 10%, compared to deriving the networks without it. Our outcomes indicate that reducing the false positives can be achieved by setting a particular connection weight. Furthermore, with the window size parameter we show that more BT observations does not necessarily mean more accurate networks. With respect to the connection type, we observe the accuracy of deriving undirected networks is higher than the accuracy of deriving directed networks. Finally, based on the outcomes we are able to come up with a set of recommendations for the future developers of similar BT data collection systems.

Original languageEnglish
Title of host publication2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019
Subtitle of host publicationProceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1795-1803
Number of pages9
ISBN (Electronic)9781728140346
DOIs
Publication statusPublished - 9 Apr 2020
Event2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019 - Leicester, United Kingdom
Duration: 19 Aug 201923 Aug 2019

Conference

Conference2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019
Country/TerritoryUnited Kingdom
CityLeicester
Period19/08/1923/08/19

Keywords

  • Algorithms
  • Bluetooth
  • Performance evaluation
  • Pervasive computing
  • Social networks

Fingerprint

Dive into the research topics of 'Parameter optimization for deriving bluetooth-based social network graphs'. Together they form a unique fingerprint.

Cite this