Passive back support exoskeleton improves range of motion using flexible beams

Matthias B. Näf, Axel S. Koopman, Saskia Baltrusch, Carlos Rodriguez-Guerrero, Bram Vanderborght, Dirk Lefeber

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks.

Original languageEnglish
Article number72
Pages (from-to)1-16
Number of pages16
JournalFrontiers in Robotics and AI
Volume5
Issue numberJUN
DOIs
Publication statusPublished - 21 Jun 2018

Fingerprint

Rigid structures
Testing
Cranes
Ergonomics
Industrial applications
Kinematics
Torque
Industry

Keywords

  • Biomechanical testing
  • Exoskeleton
  • Industry
  • Lower back pain
  • Range of motion

VU Research Profile

  • Human Health and Life Sciences

Cite this

Näf, Matthias B. ; Koopman, Axel S. ; Baltrusch, Saskia ; Rodriguez-Guerrero, Carlos ; Vanderborght, Bram ; Lefeber, Dirk. / Passive back support exoskeleton improves range of motion using flexible beams. In: Frontiers in Robotics and AI. 2018 ; Vol. 5, No. JUN. pp. 1-16.
@article{32be0176b9314f6f9dd41e7421171601,
title = "Passive back support exoskeleton improves range of motion using flexible beams",
abstract = "In the EU, lower back pain affects more than 40{\%} of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25{\%} range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks.",
keywords = "Biomechanical testing, Exoskeleton, Industry, Lower back pain, Range of motion",
author = "N{\"a}f, {Matthias B.} and Koopman, {Axel S.} and Saskia Baltrusch and Carlos Rodriguez-Guerrero and Bram Vanderborght and Dirk Lefeber",
year = "2018",
month = "6",
day = "21",
doi = "10.3389/frobt.2018.00072",
language = "English",
volume = "5",
pages = "1--16",
journal = "Frontiers in Robotics and AI",
issn = "2296-9144",
publisher = "Frontiers Media",
number = "JUN",

}

Passive back support exoskeleton improves range of motion using flexible beams. / Näf, Matthias B.; Koopman, Axel S.; Baltrusch, Saskia; Rodriguez-Guerrero, Carlos; Vanderborght, Bram; Lefeber, Dirk.

In: Frontiers in Robotics and AI, Vol. 5, No. JUN, 72, 21.06.2018, p. 1-16.

Research output: Contribution to JournalArticleAcademicpeer-review

TY - JOUR

T1 - Passive back support exoskeleton improves range of motion using flexible beams

AU - Näf, Matthias B.

AU - Koopman, Axel S.

AU - Baltrusch, Saskia

AU - Rodriguez-Guerrero, Carlos

AU - Vanderborght, Bram

AU - Lefeber, Dirk

PY - 2018/6/21

Y1 - 2018/6/21

N2 - In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks.

AB - In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks.

KW - Biomechanical testing

KW - Exoskeleton

KW - Industry

KW - Lower back pain

KW - Range of motion

UR - http://www.scopus.com/inward/record.url?scp=85050116249&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85050116249&partnerID=8YFLogxK

U2 - 10.3389/frobt.2018.00072

DO - 10.3389/frobt.2018.00072

M3 - Article

VL - 5

SP - 1

EP - 16

JO - Frontiers in Robotics and AI

JF - Frontiers in Robotics and AI

SN - 2296-9144

IS - JUN

M1 - 72

ER -