Peer selection in peer-to-peer networks with semantic topologies

Peter Haase*, Ronny Siebes, Frank Van Harmelen

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Peer-to-Peer systems have proven to be an effective way of sharing data. Modern protocols are able to efficiently route a message to a given peer. However, determining the destination peer in the first place is not always trivial. We propose a model in which peers advertise their expertise in the Peer-to-Peer network. The knowledge about the expertise of other peers forms a semantic topology. Based on the semantic similarity between the subject of a query and the expertise of other peers, a peer can select appropriate peers to forward queries to, instead of broadcasting the query or sending it to a random set of peers. To calculate our semantic similarity measure we make the simplifying assumption that the peers share the same ontology. We evaluate the model in a bibliographic scenario, where peers share bibliographic descriptions of publications among each other. In simulation experiments we show how expertise based peer selection improves the performance of a Peer-to-Peer system with respect to precision, recall and the number of messages.

Original languageEnglish
Pages (from-to)108-125
Number of pages18
JournalLecture Notes in Computer Science
Volume3226
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'Peer selection in peer-to-peer networks with semantic topologies'. Together they form a unique fingerprint.

Cite this