TY - JOUR
T1 - Phosphate ages in Apollo 14 breccias
T2 - Resolving multiple impact events with high precision U-Pb SIMS analyses
AU - Snape, J. F.
AU - Nemchin, A. A.
AU - Grange, M. L.
AU - Bellucci, J. J.
AU - Thiessen, F.
AU - Whitehouse, M. J.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - The U-Pb systems of apatite and merrillite grains within four separate Apollo 14 impact melt breccia samples were analysed by secondary ion mass spectrometry. No systematic difference was identified between the 207Pb/206Pb ages of the apatites and merrillites. A combined 207Pb/206Pb age of 3927±2Ma (95% conf.) is determined for three of these samples (14305,103: 3926±4Ma; 14306,150: 3926±6Ma; 14314,13: 3929±4Ma). By combining these data with the ages previously obtained for zircons in Apollo 12 impact melt breccia fragments and the lunar meteorite SaU 169, a weighted average age of 3926±2Ma (95% conf.) is obtained, which is attributed to the formation of the Imbrium basin. An age of 3943±5Ma is determined for the fourth breccia (14321,134), which is similar to ages of 3946±15Ma and 3958±19Ma, obtained from several older phosphates in 14305,103 and 14314,13. The weighted average of these three older ages is 3944±4Ma (95% conf.). This is indistinguishable to the age (3938±4Ma; 2σ) obtained for a different Apollo 14 impact melt breccia in a previous study. After investigating likely sources for this older ~3940Ma age, we conclude that the Humorum or Serenitatis basin forming events are likely candidates. The potential identification of two large impact events within ~15Myrs has important implications for the rate of lunar bombardment around 3.95-3.92Ga. This study demonstrates the importance of high-precision age determinations for interpreting the impact record of the Moon, as documented in lunar samples.
AB - The U-Pb systems of apatite and merrillite grains within four separate Apollo 14 impact melt breccia samples were analysed by secondary ion mass spectrometry. No systematic difference was identified between the 207Pb/206Pb ages of the apatites and merrillites. A combined 207Pb/206Pb age of 3927±2Ma (95% conf.) is determined for three of these samples (14305,103: 3926±4Ma; 14306,150: 3926±6Ma; 14314,13: 3929±4Ma). By combining these data with the ages previously obtained for zircons in Apollo 12 impact melt breccia fragments and the lunar meteorite SaU 169, a weighted average age of 3926±2Ma (95% conf.) is obtained, which is attributed to the formation of the Imbrium basin. An age of 3943±5Ma is determined for the fourth breccia (14321,134), which is similar to ages of 3946±15Ma and 3958±19Ma, obtained from several older phosphates in 14305,103 and 14314,13. The weighted average of these three older ages is 3944±4Ma (95% conf.). This is indistinguishable to the age (3938±4Ma; 2σ) obtained for a different Apollo 14 impact melt breccia in a previous study. After investigating likely sources for this older ~3940Ma age, we conclude that the Humorum or Serenitatis basin forming events are likely candidates. The potential identification of two large impact events within ~15Myrs has important implications for the rate of lunar bombardment around 3.95-3.92Ga. This study demonstrates the importance of high-precision age determinations for interpreting the impact record of the Moon, as documented in lunar samples.
UR - http://www.scopus.com/inward/record.url?scp=84947785852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947785852&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2015.11.005
DO - 10.1016/j.gca.2015.11.005
M3 - Article
AN - SCOPUS:84947785852
SN - 0016-7037
VL - 174
SP - 13
EP - 29
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -