Physiological angiogenesis is a graded, not threshold response

S. Eggington, I. Badr, D. Hauton, G.C. Baan, R.T. Jaspers

    Research output: Contribution to JournalArticleAcademicpeer-review


    Non-technical summary: The formation of new blood vessels (angiogenesis) is important during development and tissue repair. In many diseases the biggest drive for this process clearly comes from chemical signals. However, normal physiological angiogenesis, such as seen with increased muscle activity, appears to be more driven by mechanical signals including increased friction on the inside of blood vessels, and stretch of vessels caused by the surrounding muscle fibres. It is unclear whether the signals required to stimulate capillary growth act in an all-or-none manner. When muscles were subjected to varying degrees of stretch, angiogenesis was recruited in a graded fashion, although chemical signals were increased to a similar extent. This may prove to be important in the design of targeted therapies to alleviate problems associated with too many or too few vessels.Angiogenesis may be induced in skeletal muscle by metabolic or mechanical factors, but whether an in vivo stimulus threshold applies for physiological angiogenesis is unknown. We compared three models of muscle overload inducing varying degrees of stretch on angiogenesis. Rat extensor digitorum longus (EDL) was overloaded by (a) extirpation of the synergist tibialis anterior (TA), (b) sectioning the distal tendon of the TA, or (c) release of the TA tendon by sectioning the retaining ligament. EDL samples were taken after 4, 7, 14 and 28 days to quantify capillary supply (alkaline phosphatase staining), and co-labelling for cell proliferation (using PCNA). The gradation of overload was confirmed by Western analysis of SERCA and CPT expression (1.6- to 7.2-fold and 8.3- to 33.9-fold changes, respectively), and the force characteristics of EDL. There was a significant increase in the number of new myonuclei only in the extirpated group after 7 days, while there was a graded increase in capillary-linked PCNA density (PCNA
    Original languageEnglish
    Pages (from-to)195-206
    JournalJournal of Physiology - London
    Early online date8 Nov 2010
    Publication statusPublished - 2011


    Dive into the research topics of 'Physiological angiogenesis is a graded, not threshold response'. Together they form a unique fingerprint.

    Cite this