Plant traits are the predominant control on litter decomposition rates within biomes worldwide.

W.K. Cornwell, J.H.C. Cornelissen, K. Amatangalo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbir, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H.M. Quested, L.S. Santiago, D.A. Wardle, I.J. Wright, R. Aerts, S.D. Allison, P.M. van Bodegom, V. Brovkin, A. Chatain, T.V. CallaghanS. Diaz, E. Garnier, D.E. Gurvich, E. Kazakou, J.A. Klein, J. Read, P.B. Reich, N.A. Soudzilovskaia, M.V. Vaieretti, M. Westoby

    Research output: Contribution to JournalArticleAcademicpeer-review


    Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle. © 2008 Blackwell Publishing Ltd/CNRS.
    Original languageEnglish
    Pages (from-to)1065-1071
    JournalEcology Letters
    Publication statusPublished - 2008


    Dive into the research topics of 'Plant traits are the predominant control on litter decomposition rates within biomes worldwide.'. Together they form a unique fingerprint.

    Cite this