Abstract
Dermal wounds can heal detrimentally by formation of excess fibrosis or hypertrophic scarring. These phenomena are normally absent in the oral mucosa. Macrophages play an important role in wound repair, have a marked heterogeneity and are thought to contribute to fibrosis. To investigate to what extend macrophages are involved in the occurrence of fibrosis, the effect of differently activated macrophages on dermal and gingival fibroblasts was studied in vitro. Macrophages were differentiated into a classical (M1) or alternative (M2) phenotype, which was assessed by receptor expression (CD40/mannose receptor) and cytokine secretion (interleukin-4 and -12). Fibroblasts were exposed to these macrophages and/or conditioned medium (cm), and differentiation into α-SMA-expressing myofibroblasts was quantified. M2, but not M1 macrophages induced α-SMA expression in both dermal and gingival fibroblasts. Blocking of transforming growth factor-β1 did not decrease the α-SMA expression mediated by M2 macrophages. It appeared that this induction was mediated by platelet derived growth factor-CC (PDGF-CC), produced by M2 macrophages. The expression and role of this growth factor was confirmed by ELISA, RT-PCR, and blocking experiments. Our results indicate that M2 macrophages are able to induce myofibroblast differentiation via production of PDGF-CC. Based on our findings we conclude that PDGF-CC may play a hitherto unknown role in the differentiation of myofibroblasts.
Original language | English |
---|---|
Pages (from-to) | 924-929 |
Journal | Immunobiology |
Volume | 218 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2013 |