Poly(polyol sebacate) Elastomers as Coatings for Metallic Coronary Stents

L. Navarro, D.E. Mogosanu, T. de Jong, A.D. Bakker, D. Schaubroeck, J. Luna, I. Rintoul, J. Vanfleteren, P. Dubruel

Research output: Contribution to JournalArticleAcademicpeer-review


Biocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug‐eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)‐derived polymers are investigated as coatings for metallic stents. All pre‐polymers reveal a low molecular weight between 3000 and 18 000 g mol−1. The cured polymers range from flexible to more rigid, with E‐modulus between 0.6 and 3.8 MPa. Their advantages include straightforward synthesis, biodegradability, easy processing through different scaffolding techniques, and easy transfer to industrial production. Furthermore, electrospraying and dip‐coating procedures are used as proof‐of‐concept to create coatings on metallic stents. Biocompatibility tests using adipose stem cells lead to promising results for the use of these materials as coatings for metallic coronary stents.

Original languageEnglish
Pages (from-to)1678-1692
JournalMacromolecular bioscience
Issue number11
Early online date8 Aug 2016
Publication statusPublished - Nov 2016


Dive into the research topics of 'Poly(polyol sebacate) Elastomers as Coatings for Metallic Coronary Stents'. Together they form a unique fingerprint.

Cite this