Posterior convergence rates for Dirichlet mixtures of beta densities

W.T. Kruijer, A.W. van der Vaart

Research output: Contribution to JournalArticleAcademicpeer-review


We consider Bayesian density estimation for compactly supported densities using Bernstein mixtures of beta-densities equipped with a Dirichlet prior on the distribution function. We derive the rate of convergence for α-smooth densities for 0 < α ≤ 2 and show that a faster rate of convergence can be obtained by using fewer terms in the mixtures than proposed before. The Bayesian procedure adapts to the unknown value of α. The modified Bayesian procedure is rate-optimal if α is at most one. This result can be extended to two dimensions. © 2008 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)1981-1992
JournalJournal of Statistical Planning and Inference
Issue number7
Publication statusPublished - 2008


Dive into the research topics of 'Posterior convergence rates for Dirichlet mixtures of beta densities'. Together they form a unique fingerprint.

Cite this