Abstract
In order to assess the significance of the dynamics of neural control signals for the rise time of muscle moment, simulations of isometric and dynamic plantar flexion contractions were performed using electromyographic signals (EMG signals) of m. triceps surae as input. When excitation dynamics of the muscle model was optimized for an M-wave of the medial head of m. gastrocnemius (GM), the model was able to make reasonable predictions of the rise time of muscle moment during voluntary isometric plantar flexion contractions on the basis of voluntary GM EMG signals. The rise time of muscle moment in the model was for the greater part determined by the amplitude of the first EMG burst. For dynamic jumplike movements of the ankle joint, however, no relationship between rise time of muscle moment in the experiment and muscle moment predicted by the model on the basis of GM EMG signals was found. Since rise time of muscle moment varied over a small range for this movement, it cannot be completely excluded that stimulation dynamics plays a role in control of these simple single-joint movements.
Original language | English |
---|---|
Pages (from-to) | 380-386 |
Journal | European Journal of Industrial Engineering |
Volume | 122 |
DOIs | |
Publication status | Published - 2000 |