Abstract
Understanding and controlling peptide aggregation are critical due to its neurotoxic implications. However, structural information about the key intermediates, the oligomers, is obscured by a cascade of coinciding events occurring at various time and energy scales, which results in complex and heterogeneous mixtures of oligomers. To address this challenge, we have developed the Photo-Synapt, a novel, multidimensional spectrometer that integrates ion mobility mass spectrometry with infrared (IR) action spectroscopy within a single experiment. By combining three different orthogonal analytical dimensions, we can select and isolate individual oligomers by mass, charge, size, and shape and provide a unique molecular fingerprint for each oligomer. The broad application of this technology is demonstrated by its application to oligosaccharide analysis from glycoproteins, which are challenging to analyze due to the minute differences between isomers. By integration of IR action spectroscopy with ion mobility mass spectrometry, this approach adds an analytical dimension that effectively addresses this limitation, offering a unique molecular fingerprint for each isomer.
Original language | English |
---|---|
Pages (from-to) | 13962-13970 |
Number of pages | 9 |
Journal | Analytical chemistry |
Volume | 96 |
Issue number | 34 |
Early online date | 16 Aug 2024 |
DOIs | |
Publication status | Published - 27 Aug 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Published by American Chemical Society.
Funding
The authors gratefully acknowledge funding from the research program VICI with project number VI.C.192.024 and Aspasia (015.015.009) from the Dutch Research Council (NWO) awarded to A.M.R. We would like to thank all members from the MS-Laserlab (Vrije Universiteit Amsterdam), and especially Iuliia Stroganova, Agathe Depraz Depland and Kevin Hes, for helpful discussions.
Funders | Funder number |
---|---|
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |