Productivity affects the density–body mass relationship of soil fauna communities

V. Comor, M.P. Thakur, M.P. Berg, S. de Bie, H.H.T. Prins, Frank van Langevelde

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The productivity of ecosystems and their disturbance regime affect the structure of animal communities. However, it is not clear which trophic levels benefit the most from higher productivity or are the most impacted by disturbance. The density-body mass (DBM) relationship has been shown to reflect changes in the structure of communities subjected to environmental modifications, so far, mainly in aquatic systems. We tested how different seawater inundation frequencies and cattle grazing, which both disturbed and impacted the productivity of a terrestrial system, a salt marsh, affected the size structure of soil fauna communities, expressed by their DBM relationship. We hypothesized that either: (1) all the trophic levels of soil fauna would benefit from higher productivity (i.e., amount of litter mass), reflected by a higher Y-intercept of the DBM relationship; (2) only smaller animals would benefit, reflected by a lower slope of the relationship; (3) or only larger animals would benefit, reflected by a higher slope of the relationship. We collected a large range of soil fauna from different elevation levels in grazed and ungrazed areas, thence subjected to different levels of productivity, represented by litter mass, with the most inundated and grazed area as the least productive one. Considering that pore size must be smaller in inundated and grazed areas, productivity seemed to be a greater factor influencing species distribution than soil structure. We found slopes lower than-0.75, showing that large animals dominated the community. However, a difference between the DBM relationships of the most and least frequently inundated ungrazed sites indicated that higher productivity benefited the smaller animals. Our findings show that high productivity does not equally affect the different trophic levels of this soil fauna community, suggesting inefficient transfers of energy from one trophic level to another, as smaller species benefitted more from higher productivity. © 2014 Elsevier Ltd.
Original languageEnglish
Pages (from-to)203-211
JournalSoil Biology and Biochemistry
Issue number72
Early online date18 Feb 2014
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Productivity affects the density–body mass relationship of soil fauna communities'. Together they form a unique fingerprint.

Cite this